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Soliton excitations in a one-dimensional nonlinear diatomic chain of split-ring resonators
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We present a systematic analytical study of the dynamics of nonlinear magnetoinductive waves in a one-
dimensional diatomic lattice of split ring resonators (SRRs) with Kerr nonlinear interaction between nearest
neighbors. The linear spectrum of this model have two branches and exhibits a gap, which is proportional to
the difference between two types of SRRs. We analyze the nonlinear excitations genuine of the discreteness
and nonlinearity in such a diatomic chain based on an extended quasidiscreteness approach. Gap solitons (with
vibrating frequency lying in the gap), resonant kinks (with the vibrating frequency lying in the frequency
bands), and intrinsic localized modes (with the vibrating frequency being above all the frequency bands) are
obtained explicitly. It is also shown that the existence of different localized structures depend strongly on the
type of nonlinearity of the embedded medium (a self-focusing or defocusing one).
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I. INTRODUCTION

The pioneering works of Fermi, Pasta, and Ulam [1] and
of Zabusky and Kruska [2] have stimulated a great variety of
research on discrete solitons, or more generally localized
nonlinear excitations in nonlinear discrete systems. For such
discrete systems an accurate description involves a set of
difference-differential equations and the intrinsic discrete-
ness may drastically modify the nonlinear dynamics of the
systems. The discreteness makes the properties of the sys-
tems periodic, so that due to the interplay between the dis-
creteness and the nonlinearity, certain types of nonlinear ex-
citations may exist, which have no counterpart whatsoever in
continuous systems [3—6]. They are indeed natural modes of
the systems. One of the typical and well-known examples is
the crystal lattices subjected to a nonlinear on-site potential
[7-9]. For the model of a diatomic chain there is a frequency
gap between the acoustic and optical branches. In the linear
case, a spectrum gap means that wave propagation of certain
wavelength is forbidden, but when the nonlinearity is intro-
duced, waves maybe allowed to propagate in the form of gap
solitons. Other nonlinear excitations, such as resonant kinks,
and intrinsic localized modes, have also been investigated.

Recently, artificially constructed metamaterials have be-
come of considerable interest, because these materials can
exhibit electromagnetic characteristic not available in natu-
rally occurring materials [10]. Theoretical approaches to
metamaterials often use an effective medium approximation,
which relies on the averaging of microscopic fields [11,12].
The approximation is justified when the characteristic scale
of the wavelength of the electromagnetic field is much larger
than the period of the microstructured medium. Effective
medium theory can be used to explain the phenomenon when
electromagnetic wave enters metamaterials. However, such a
theory, based on averaging, is bound to disregard the waves
whose existence is entirely due to interaction between the
individual elements through electromagnetic fields. Split ring
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resonators (SRRs) as one of typical resonant magnetic ele-
ment have been attracted much attention since it was first
proposed and applied to design negative refractive medium
[11,13]. Such magnetic metamaterials (MMs) not only ex-
hibit negative permeability but also support eigenmodes of
the structure, which owe their existence to magnetic coupling
between the elements [14,15]. The eigenmodes in the SRRs
arrays are referred to as magnetoinductive (MI) waves. MI
waves have been applied for delay lines [16], phase shifters
[17], and microwave lenses [18] etc. Moreover, we note ei-
ther by embedding the SRRs in a Kerr-type medium [19,20],
or by inserting certain nonlinear elements (e.g., diodes) in
each SRR [21-23], MMs may take on nonlinear properties.
The combination of nonlinearity and discreteness in MMs
arrays allows one to expect the formation of nonlinear local-
ized structures. Recent researchs show one-dimensional (1D)
or two-dimensional (2D) discrete array of a nonlinear mon-
atomic chain of SRRs supports localized structures in the
form of discrete breathers [24,25], magnetic domain walls
[26], magnetoinductive envelope solitons [27], self-induced
gap solitons [28]. Up to the present time, the study on non-
linear magnetoinductive wave focused on models of mon-
atomic chains, the nonlinear excitations in diatomic chain
has not been investigated to our knowledge.

In this paper, we consider the nonlinear excitations in 1D
nonlinear diatomic chain of SRRs with nearest-neighbor in-
teraction. Such 1D “magnetic diatomic” chain consists of
two types of SRRs, and two branches of dispersion relation
are expected which is analogous to the diatomic model of
crystal lattice. If the nonlinearity of the system is considered,
the characteristics of the spectrum changes and some local-
ized nonlinear excitations may appear. To obtain the nonlin-
ear excitations that vary slowly on the scale of the lattice
spacing, we approximate discrete models by continuum par-
tial differential equations, obtaining analytical solutions,
which is close to the phenomena observed in original dis-
crete (but often analytically intractable) models, using a sys-
tematic method called the quasidiscreteness approximation.

The paper is organized as follows. In Sec. II, we present
our model, which describe the charge distribution in one-
dimensional diatomic chain of SRRs with a Kerr interaction
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between nearest neighbors and the linear spectrum is also
derived. In Sec. III, the asymptotic expansions are provided
based on the quasidiscreteness technique. We derive two
nonlinear envelope equations of amplitudes for acoustic and
optical modes in this section. By using the results obtained in
Sec. III, in Sec. IV, we present the analytical solutions of the
nonlinear excitations at the band edge of the linear spectrum
with zero-group velocity. Finally, Sec. V contains a discus-
sion and summary of our results.

II. PHYSICAL MODEL

We consider a one-dimensional diatomic chain of SRRs
with its nearest-neighbors interaction. The model is discrete
and the separation of neighboring SRR centers is a being a
fundamental physical parameter. A 1D array can be con-
structed either in the planar conjuration or in the axial con-
juration [15]. In the simplest representation, each SRR is
equivalent to an RLC oscillator. The rings form the induc-
tances and the two slits as well as the gap between the two
rings can be considered as capacitors. A magnetic field ori-
ented perpendicular to the plane of the rings induces circu-
lating currents owing to Faraday’s law. The diatomic chain of
SRRs includes two different size of SRRs, and we define
self-inductance, Ohmic resistance, capacitance for the bigger
SRR as L;,R,,C;, and for the smaller SRR as L,,R,,C,.
The units become nonlinear due to Kerr dielectric that fills
their gap [19] and equivalent permittivity is €E|*=¢,(¢;
+a|E[*/ E?) depending on the electric field E. The parameters
€ and ¢ represent the vacuum permittivity and linear per-
mittivity respectively, E, is a characteristic electric field, and
a=+1 (a=-1) accounts for self-focusing (defocusing) non-
linearity. As a result, the SRRs acquire a field-dependent ca-
pacitance C, |E|*=€(|E,;|*)A;/d,;, where j=1,2 accounts for
two different kinds of SRRs. E,; is the electric field induced
along the SRR slit, A y is the area of the cross section of the
SRR wire, and d,; is the size of the slit. If O, and g, are the
charge stored in the capacitor of the big and small SRR re-
spectively, from the general relation of a voltage-dependent
capacitance, we get,

U2 2

: )U q=C<l+a S )u

3€]U31 " " 2 Elng "
(1)

Qn=C1<l+a

where U,=d, E,; and u,=dyE,, are the voltage across the
slit of the SRRs, C;=¢€)€(A;/d,;) is the linear capacitance,
and U, ;=d,E, (j=1,2). Neighboring SRRs are coupled due
to magnetic dipole-dipole interaction through their mutual
inductance M, which decays as the cube of the distance. For
weak coupling between SRRs in a planar configuration, it is
a good approximation to consider only nearest neighboring
SRRs interactions. The dynamics of Q,(g,) and the current
I,(i,) circulating in nth bigger SRR and smaller SRR can be
described by

. dg,
l,= .
dt

(2)
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where &, and &, are related to the electromotive force in-
duced in each SRR due to the applied field. Making the
translation:  t—owyt, I,—1.1,, i,—ii,, 0,—0.0,. q,
= Q> E1—E Uy, E—EU,, with  w’=L,C;, »,°
=L2C2’ Qc:ClUcl? qc=C2U02’ IC=Uclw1C1’ ic

=U,w,C,, Egs. (4) and (5) can be normalized to

d
E()\lin_ln"')\liiﬁl)+f(Qn)= 711n+81(t)7 (6)

d
Z‘()\Zln - ln + )\2In+1) + )\f(CIn) = ’)’Zin + 52(1‘), (7)

with N=Mi.J(Li1,), N=MI./(Lsi.), \
=(I.L\U)/(i.LyUs), =R/ (Lyw)), %2=Ry/(Lyw)).
v1,7Y, are the loss coefficient, which is usually very small
(y1,7,<<1), may account for both Ohmic and radiative
losses. Ny, \, are the coupling parameters. N denotes the dif-
ference between the big SRR and small SRR. Here, we de-
fine A > 1 without loss of generality. Making a Taylor expan-
sion of Eq. (1) for U,=f(Q,), u,=f(gq,) and keeping up to
cubic terms, Egs. (6) and (7) can be transformed to

d? a do,
E()\lqn - Qn+ )\lqn+l) - Qn+ 3_qu: Y, — gl(t)’

dt
(8)
d? @ 5 dg,
ﬁo\an = qnt N0pi1) — Mg, + 3_61% =% dr & (1).
)

The right-hand side will be omitted in the following, i.e., by
setting y;=v,=0, &£ =&,=0, thus neglecting losses and
electromotive forcing. The linear dispersion relation of Eqs.
(8) and (9) is

> (D) E{(N+1)7 = 4N[1 =20\ (1 + cos ka) ]}
@ = 2 —4nNy(1 + cos ka) .

(10)

with —7/a <k=m/a. The minus (plus) sign corresponds to
acoustic (optical) mode. We call w, (k) the acoustic and w_(k)
the optical for comparison with the diatomic crystal lattices.
The dispersion relations are depicted as two solid black
curves in Fig. 1. At wave number k=0 the eigenfrequency
spectrum has a lower cutoff wf(O)Ewf:{()wl)—[()\—l)2
+16AN\,]"?}/(2—8N\ \,) for the acoustic mode and an up-
per cutoff (0)=wi={(\+1)+[(\=1)2+16AN\,]"2}/ (2
—8\\,) for the optical mode. At k=1/a there exists a fre-
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FIG. 1. (Color online) Dispersion curves in the diatomic chain
of SRRs

quency gap between the upper cutoff of the acoustic branch,
w*(mla)= w,=1, and the lower cutoff of the optical branch,
w2(7/a)= w;=\. The width of the frequency gap is Aw
=N—1. We note the gap vanishes for the diatomic lattice
when A — 1, thus, the system becomes continuously mon-
atomic lattice and with increase of the difference between
two type of SRRs, the separation between the acoustic and
optical branches widens. In linear theory, the amplitudes of
lattice waves are constants and linear waves cannot propa-
gate and will be damped when the frequency w lies in the
regions 0<w<w;, »,<w<ws; and w>w,. Accordingly,
these regions are the “forbidden bands.” However, when the
nonlinearity in Egs. (8) and (9) is considered, such waves
maybe exist in the form of gap solitons or other localized
modes. The oscillatory frequencies of localized modes can
lie in the forbidden bands of the linear spectrum. The solu-
tions of gap solitons and other localized modes may be ob-
tained at k=0 or k== w/a as we will see in the following.

III. NONLINEAR ENVELOPE EQUATIONS FOR
ACOUSTIC AND OPTICAL MODES

Because in general it is not possible to solve analytically
nonlinear lattice equations such as Egs. (8) and (9), some
approximate theories have been developed. One powerful
and clear-cut method is the method of quasidiscreteness ap-
proach, widely used in the study of nonlinear waves, soli-
tons, and pattern formation in discrete system. The basic
spirit of the quasidiscreteness approach is the assumption
that a linear plane lattice wave is weakly modulated by the
nonlinearity of the system. The carrier wave is discrete and
can be described by a function with the fast variables n and
t. The envelope is a function of the slow variables such as
&,=&(na—V,1) and 7=g’1. Here, V, is a parameter to be de-
termined by a solvability condition. & (0<g<1) is a small
parameter denoting the relative amplitude of excitations. In
this treatment one sets,

0,(1)=e0W(&, 76, + 209 (&, 76, + 0% (&,, 73 6,)

+..= 2600 (11)

j=1

The fast variable, 6,=kna— wt, representing the phase of the
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carrier wave, is taken to be completely discrete. The same
expansion for g, is

a0 =2 elg¥),. (12)
j=1

Substituting Eqgs. (11) and (12) into Egs. (8) and (9) and
using the solvability conditions in the asymptotic expansion,
we obtain the nonlinear Schrédinger equation (NLSE),

AL 1 PA. 5
i +—Fi—+2+Ai|A:| A_=0, (13)
ar 2 T IE;

n

where A,(&,7) and A_(£,,7) are envelope functions for
acoustic and optical modes respectively. The coefficients I,
A. in Eq. (13) are given in the Appendix. Letting
Ai(ff,r)=(1/s)Fi(xf,T) and noting that §f=s(na—V§)
=ex, (x, =na-V,) and 7=g% with V, are group velocity
for acoustic and optical modes shown in Appendix, Eq. (13)
can be written as

1 &F.
+ =T — +AL|F.’F. =0. (14)
ot 2 T ox;

OF .
i

n

The NLSE [Eq. (14)] is completely integrable and can be
solved by the inverse scattering method [29]. The results
given above are valid in the whole Brillouin zone, m/a <<k
= 7/a. Whether the solution of Eq. (14) is soliton or kink
depends on the sign of I'-A ... The analytical solution will be
given in the next section. The solutions of Eq. (14) describes
modulations of the wave envelope in the reference frame
moving at the group velocity V;. We would like to note the
two classes of localized structures when the wave number k
approaches the edges of the Brillouin zone (0 or 7r/a) with
vanishing group velocity. In the former case, i.e., k=0, the
envelope F.(n,r) describes slow variations of the charge
q,(Q,) itself and in the latter case, the function F.(n,t) de-
scribes an envelope of the out of phase vibrations in the
lattice.

IV. GAP SOLITONS, RESONANT KINKS, AND INTRINSIC
LOCALIZED MODES

As we see for a diatomic chain of SRRs, there are two
separate dispersion branches for the diatomic chain, upper
branch w, (k) and lower branch w_(k) shown in Fig. 1. A gap
exists between these two branches. Considering the nonlin-
earity in Egs. (8) and (9), the oscillatory frequencies of lo-
calized modes can lie in the forbidden bands of the linear
spectrum. In the following, we will write down the explicit
expressions of nonpropagating solutions in the first-order ap-
proximation:

(1) Acoustic lower cutoff mode. For the acoustic mode at
k=0, we have w_=w, (the acoustic lower cutoff frequency).
V;,:O, Xx,=na, and

az)\ 1 )\2(1)?

S (enel "
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Caw; No(= o7 + 1)+ N (0] - V)
T 2e M- o)N - o) + (N = w))]

(16)

Considering the condition w; <1<\, I'_ is always positive
and the sign of A_ is determined by the parameter «. If the
embedded medium is self-focusing, i.e., @ >0, the nonlinear
parameter A_>0. For sign(I"_A_) >0, Eq. (14) for F_ admits
the soliton solution

F—(xmt) = (F—/A—)I/Z m SeCh[ ) (xn - )C())]

Xexp[i(%l"_n%t—ﬂo)}, (17)

where 7, xi, and 6, are arbitrary constants. Hence, in the
first-order approximation we have

qn=(T_/A) 7y sech[79,(n = ng)a] X exp[i(Q}r - 6p)]
+c.c., (18)

0,=- Zw%)\z/()\ - cu%)(l"_/A_)”2 7, sech[ 7,(n — ny)a]
X expli(Qr—6)]+c.c. ==20\/(\ — 0 g,
(19)

where ng is an arbitrary integer, and
s 1 2
O =w - EI‘_nl. (20)

Q, is less than w,, i.e., ; lies in the bottom gap of the
dispersion curves. We call this type of nonlinear excitations
an acoustic lower cutoff soliton or a bottom gap soliton. The
central position of the localized mode is at site n=n,, which
depends on the initial exciting condition of the system.

When the embedded media is self-defocusing, <0, then
sign(I"_A_) <0, a transition from soliton to kink occurs.
Equation (14) for F_ admits the kink solution

F_(x,,2) = (T_/|A_])""*%, tanh[ 7, (x, — x0)]

1
Xexp[—i(EF_nft—ﬁo)], (21)
Then the system has the configuration

¢, =(T_/|A_))""7, tanh[ 7,(n — ng)a] X exp[i(Q]ft - 6]
+c.c., (22)

0, =—2wM\/(\ — 0)(I'_/|A_|)"> 5, tanh[ %,(n — ne)a)
X expli(Qr— )] +c.c. == 20 Ay/(\ - 0))g,,
(23)

with
k 1 2
Ql = W + EF_"]] . (24)

being within the frequency band of the acoustic mode, so it
is a resonant kink of the system. Equations (18), (19), (22),
and (23) show that the vibration of two sublattices are out of
phase and with different amplitudes.
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FIG. 2. The pattern of the gap solitons in 1D diatomic lattice of
SRRs: (a) acoustic upper cutoff mode; (b) optical lower cutoff
mode.

(2) Acoustic upper cutoff mode. For the acoustic mode at
g=* m/a, we have w_=w, (the acoustic upper cutoff fre-
quency), V,=0, and

az)\ 1)\2 _ o

A =—.
28[

r.= , -
A1

(25)

I'_<0 and the sign of A_ is determined by the type of media
a. For sgn (I'_A_>0), one has the single soliton solution

F_(x,,1) = (|F—|/A—)l/2 7, sech[ 7,(x,, — x¢)]

X exp{—i(%ﬁ‘_hﬁt— Hoﬂ, (26)

where 7, is arbitrary constants. Then the system has the
configuration

qn= (= 1)"([T_[/A) 9, sechl 7,(n — ng)a] X expli(Q3r

-6)]+c.c., (27)
0,=0, (28)
with
s 1 2
Q=ay+ [0 17 (29)

being within the frequency gap between the dispersion
curves of the acoustic and optical modes. It is a typical gap
soliton when the condition aw<O0 is satisfied, i.e., the embed-
ded medium is self-defocusing. The vibrating frequency (2
has the parabola relation with respect to the wave amplitude,
denoted by the parameter 7,. It is the nonlinearity of the
system that induces localization in frequency gap. In these
localized modes, all the big SRRs have no current and the
small ones form a nonpropagating envelope soliton with op-
posite phase between the nearest neighbors. The lattice vi-
bratory patterns are shown in Fig. 2(a).
For sgn (I"_A_<0), one has the kink soliton solution,

016604-4



SOLITON EXCITATIONS IN A ONE-DIMENSIONAL....
F_(x,,1) = (IT_|/AL) "2 9, tanh[ 7,(x;, = x)]

X exp[i(%|f‘_|7]§t— ﬁoﬂ, (30)

where 7, is arbitrary constants. The charge distribution is

g = (= 1Y(T_/AL) ", tanbl 7 = ng)a] X expli(Qt

+6)]+c.c., (31)
0,=0, (32)
with
k 1 2
M=0 = m, (33)

which is within the frequency band of the acoustic mode. It
can be called as acoustic upper cutoff resonant kink. There is
always no charge distribution in the big SRRs and in the
small ones the charge distribution vary with opposite phase.

(3) Optical lower cutoff mode. For the optical mode at k
=0, one has w,=w; (the optical lower cutoff frequency),
Vg=0, and

_ az)\l)\zwg (34)
N1+ No;’
Cawy M= 03+ 1)\ (0F - V) (35)

28 M1 - )N - o)+ (N —0d)]

I, is always negative and A, is also determined by «. For
sgn (I'_A_>0), one has the single soliton solution

Fy(x,,1) = (IT/]ALD " 75 sechl 73(x,, = x0)]
1
Xexp[—i<£|r+|77§t— 90)], (36)

where 7); is arbitrary constants. The charge distribution in
this case takes the form,

0,= (= (T [/|A) "5 sechl 73(n = ng)a] X expli(Q3r

-0)]+c.c., (37)
q,=0, (38)
with
s 1 2
Q3=w3+5|r+|773’ (39)

which is within the frequency band of the optical branch. At
this mode, the small SRRs has no current, and the big SRRs
oscillate with opposite phase between their nearest neigh-
bors, forming a nonpropagating envelope soliton.

For sgn (I',A, <0), one has the kink soliton solution

F(x,) = (T, J/A,) "% 5 tanh[ 773(x, - x0)]
1
X exp[z’(5|f‘+|7]§t— Hoﬂ , (40)

where #7; is arbitrary constants. we have
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0,= (- l)n(|1—‘+|/A+)l/2 7 tanh[ 7]3(” - ”0)61]

X expli(Qsr—6)]+c.c., (41)
4,=0, (42)
with
k 1 2
O3=w;3- §|F—|773, (43)

being within the frequency gap between the dispersion
curves of the acoustic and optical modes. We can see such a
diatomic chain of SRRs may support the localized mode in
the form of kinks provided the nonlinear vibrate frequency
lies in the gap. The lattice vibratory patterns are shown in
Fig. 2(b).

(4) Optical upper cutoff mode. For the optical mode at k
==*0, we have w,=w, (the optical upper cutoff frequency),
Vg=0, and

az)\l)\zwi o

r,=- . A,=—1\. 44
T+ Nw, T 28 (“44)

Due to @;>\>2N/(1+\), 2A=(1+N)w, <0, I',>0, and
the sign of A, is also decided by the type of the embedding
medium. For sgn (I';A,>0), one has the single soliton so-
lution

F+(-xmt) = (1_‘+/A+)1/2 74 SeCh[ 774(xn - xO)]
1
X exp{i(gf}nﬁt— 00)], (45)

where 7, is arbitrary constants. The lattice configuration
takes the form,

0, = (T /A,)" 5, sech[ ny(n — ng)a] X expli(Qt — 6,)]
+c.c., (46)

g, = 2N 03/ (w; = 1)(T/A,) 7, sech[ 4(n - ng)a]
X exp[i(Qqt — )]+ c.c. =2Mwi/(wi-1)0Q,,
(47)
with
1

Q)= wy— Erﬂlzzu (48)

being within the frequency band of the optical mode. The
two kinds of SRRs oscillate with the same phase and differ-
ent amplitude.

For sgn (I'_A_<0), one has the kink soliton solution

F+(xn’t) = (1_‘+/|A+|)1/2 4 tanh[ 774(xn - x())]
1
Xexp[—i(znvﬁt—é’o)], (49)

where 7, is arbitrary constants. Hence, in the first-order ap-
proximation we have
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0, = (I'/|A,])"* 9, tanh[ 74(n — ng)a] X exp[- i(QIfJ - 6)]
+c.c., (50)

qn =2\ w3/ () = DT J|A,]) 2, tanh[ 7,(n — ng)a] X expl
—i(Q%r— )] +c.c. =20 wi/(w] - 1)0,, (51)

with
k 1 2
Q4= 0)4+ EF+7]4, (52)

i.e., the vibrating frequency of the localized mode is above
the spectrum of the linear optical mode. So Egs. (50) and
(51) is an intrinsic localized mode of the system with kink-
type solution. Two types of SRR have the same phase.

Noticing that in the experimental 1D diatomic SRRs array
system, the self-inductance of two different kinds of circular
SRR is determined by the L;=uow[In(16w;/h;)~1.75](j
=1,2) which the parameter w ; is radius and hj is diameter of
the circular cross section. The expression for the mutual in-
ductance between two SRRs can be calculated by means of a
simple approximation as M zyoﬂ'w%wg/ 4a® for planar ge-
ometry. For axial geometry the mutual inductance is M
= uomwiw3i/2a>. The coupling parameter \;(j=1,2) calcu-
lated in the axial geometry is twice as strong as planar ge-
ometry with the same separation distance a approximatively.
Choosing w1=2.5 um, hl=1.8 um, d, =1 wm and w2
=24 pm, h2=2 pum, d,=1 pum with the separation dis-
tance as a=5.1 um, the resonance frequency for one SRR is
about 16.3 THz, and for another is about 15.8 THz [24,25].
For axial geometry the coupling parameters are A\,
=0.12, \,=0.15 and the important parameter \ relating to
the gap size can be calculated as 1.2. It is appropriate to
choose the linear permittivity €;=2. The above requirements
can be easily realized in experiment. The great flexibility of
metamaterial engineering maybe provide an opportunity to
observe different kinds of nonlinear excitations in such sys-
tem.

V. SUMMARY AND DISCUSSION

In summary, we have analytically studied the nonlinear
dynamics in a 1D diatomic lattice of SRRs with Kerr non-
linearity by use of the method of quasidiscreteness approxi-
mation. Many different types of nonlinear excitations have
been obtained in a unified way.

We first present the discrete model of 1D diatomic chain
of SRRs subjected to Kerr nonlinearity considering only
nearest neighboring interactions. For such discrete systems
an accurate description involves a set of difference-
differential equations and the intrinsic discreteness combined
with nonlinearity can drastically modify the dynamics of the
system. The nonlinear controlling equations describing the
charge variation is derived and normalized. There is an im-
portant parameter \ to denote the difference between two
types of SRRs. The linear dispersion relation is obtained and
a frequency gap appear between the acoustic and optical
branches. The gap size is decided by the parameter \, and
when A — 1, i.e., the gap disappear.

PHYSICAL REVIEW E 81, 016604 (2010)

In Sec. III, using an asymptotic expansion for the charge
distribution of each element under a quasidiscreteness ap-
proximation, the original nonlinear equations can be trans-
formed into a set of inhomogeneous linear equations, which
can be solved order by order. The expansion procedure is
quite general and can be applied to other nonlinear lattice
systems. We have solved the acoustic and the optical modes,
respectively. For excitations that vary slowly on the scale of
the lattice spacing, one can approximate discrete models by
continuum partial differential NLS equations in the whole
Brillouin zone. In Sec. IV, the nonlinear localized modes
relevant to the cutoff modes of the linear bands were ob-
tained. Our results show that, for 1D diatomic chain of
SRRs, one has different types of nonlinear localized modes,
such as the bottom gap soliton, the resonant kink, the gap
soliton, and intrinsic localized mode. We note the existence
of different localized structures depend drastically on the
type of nonlinearity (a self-focusing or defocusing one). Gap
solitons are our interesting nonlinear excitations in diatomic
lattice systems. We analyze soliton solutions with the fre-
quencies lying in the vicinity of the gap of the linear spec-
trum. It is shown analytically that such a diatomic chain of
SRRs may support the gap solitons provided the soliton fre-
quency lies within the gap. There are two type of gap soli-
tons. One is an envelope soliton shown in Eq. (27), and Egq.
(41) is the other one which is a kink-type soliton.

Considering magnetic metamaterials composed of SRR
can be controlled by adjusting the size and distance between
them artificially, a discrete array of nonlinear SRRs is a good
system to display a richer class nonlinear excitations. Up to
now, the dynamics of nonlinear magnetoinductive wave has
never been studied in 1D diatomic chain of SRRs. We be-
lieve our results may be useful to help further understand the
excitation spectrum and properties in magnetic metamateri-
als as well as be a guide for experimental findings.
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APPENDIX: DERIVATION OF THE NLSE

Using the expansion in Egs. (11) and (12) and equating
the coefficients of the same powers of & from Egs. (8) and
(9), we obtain

g~ 0+ Ml - 0% =Y. (D
with
M=o, (A2)
MY = 0PN Ol =210V, 004~ 4
&, &,
MO, (A3)
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1,5 J
3 2 3
I R LT | R

(A4)

21wv8_§n|: lan_qnn <a(9_§nan+l+an+l>:|

+zlw—(x o= ah+ M0, ) — 2i0V? §2<x 0 —glh)
+ Qn n+l1 (AS)
and
z )
ﬁ()\ZQ qn nt )\ZQn n— 1) )\q NO (A6)
with
NP =0, (A7)

d
NP =~ wna—q') | +2i0V, —()\zq(l) -0\

n O-)gn n,n—1 g fn n,n nn
+7\2qnn 1 (A8)
1,7
N(3) 7\( (1) ) )\_ (1)3
n |: 2 2 angnnl agnqnnl 3e lan
(A9)

1 2
a_Q,(1 s ng,r)z—l) ]

-2iwV, _|:)\2q(2) Qn n ( &g

£ 98,

&
+21w—()\2q(1> O+ ngl) ) = 2i0Vi—

1 1
n,n—1 g § ()\2q<) Ql(1,l)1
n

i (a10)

We rewrite Egs. (A1) and (A6) in the form,

A )\2L0(2Q Qn n+1+ nn 1) L LZQ I:IN;(':/)

n,n

+ NoLo(MY + MY), (A11)

A )\2140(2% nt 61;(1]21+1
+ an’ll

with Lo=d%/d, Li=1+P1d% Ly=\+/2 and |
=1,2,3,... One can solve the Eq. (A11) to obtain the charge
variation QU) of big SRRs, and get the charge variation of
small ones, qn - from Eq. (A12) step by step using the solv-
ability conditions in the asymptotic expansion.

+qnn )-L Lz‘]%:izMy)"‘Mio(Ny)
(A12)

1. ACOUSTIC MODE EXCITATIONS

First, we investigate the lower-frequency (acoustic) mode
of the system. For j=1 we have the linear equations from
Egs. (All) and (A12),
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ML 2O + 00, + O ) - LiL,0!) =0,

(A13)
A )\ZLS(an nt 61;(11;)1+1 + qg’llzl )= lA’llAqu:B; =0. (A14)

It is easy to get the solution
qnn =A_(§,, nexp(ibd) +c.c., (A15)

Q,(:,)q N[ 1+ exp(— zka)] ALE,

w—)\

7exp(ib,) +c.c.,

(A16)

with ¢, =kna—w_t and c.c.. represent the complex conjugate.
w_(k) has been given in Eq. (10) with a minus sign. The
envelope function A_(&,,7) is yet to be determined. For j
=2, Egs. (All) and (A12) take the form,

Qn n+1 + QEfr)l
+NaLo(MY +MD),

7\17\2LA5(2Q( )= i‘li‘ZQifr)z =L,NY

(A17)

7\17\2L(%(2€/£12r)z + qn n+1 + qn n— 1) L L2q(2r)z LzMEzz)
+ N Lo(N?P + N2, (A18)

Using Egs. (A15) and (A16), we can calculate M, 2) M
N(z) and N?.. Then we have,

n+l-

2 2 2
A LO(an11+q£Lr)t+l+q}<121 )= Ll 25151;)1

0A_ .
={[2N-(\ + l)wE]V;, + 2N \aw’ sin(ka)}Ee’aﬂ +c.c.

n

(A19)

Since the term proportional to exp(if,) on the right-hand
side of Eq. (A19) is a secular term it must be eliminated
(solvability condition). One has

A\ aw’ sin(ka) do_

- A20
T -+ De?  dk’ (420)

i.e., it is the group velocity of the carrier wave. Solving Egs.
(A17) and (A18) under the condition (A20) we obtain

02 =B (&, Dexp(if,) +c.c., (A21)

1 - .
qf,)l =21 {7\10)2(1 +e*B_+ [Mw%ae”“’
w

2iNw_(1 + &)
-5V | == (exp(if) +c.c.
ﬁf;

w
(A22)

where B_ is another undetermined function. In fact, we can
set B_=0 because it may be transferred to the lowest-order
solution Egs. (A13) and (A14) and the transferred quantity
can be regarded as a new expression for A_ [30]. Thus, we
have,

0% =0 (A23)
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1 L 2N (1 + e
Gpn = )\lwzae‘k e (2 ) Ve —exp(lﬂ_)
o’ -1 wZ &,
+c.c., (A24)

In the order j=3, we have the third-order approximate equa-
tions,

MALE20E) + 00, + 08 )~ LiL,00) = LNY
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NALE2g0) + g + 4 ) = LiLyg) = LM

+ N LN+ NGO, (A26)

By use of Egs. (A15), (A16), (A21), and (A22), we can get
M(%) S N<3) and N¥, . A detailed calculation yields,

n,n+ n,n—1 n—-1° n+l*
LMY + MY, (A25)
|
7200 13) L ) 3) F o 0) P e[ PAZ 1 PA > i
NNLG 2O+ Oy + Qi) = LiLy 0 = | (1 +e7) z;+—F Py +A_JA_PA_| e +c.c., (A27)

with
21 +Nw_V,

®+ 5an i\, sin(ka) w2V, + @\ \\yw’ cos(ka)

.=

Caw NG(= @2+ 1)+ N (02 - V)
28 NN )N - 0) + (A=)

(A29)

Again the solvability condition for Q( ) requires that the co-
efficient proportional to exp(id,) on the right-hand side of
Eq. (A27) vanishes. This gives the closed equation for
A—(gn ’ T)a

GA_ 1 PA )
i— + F—2+A|A|A_O

P 9 (A30)

2. OPTICAL MODE EXCITATIONS

Second, we consider the higher-frequency optical-mode
excitations. We can solve them order by order by the proce-
dure used in solving the acoustic mode in the last subsection.
Thus, we can write the solution of the optical mode. For j
=1, we have

0\) = A (&, Dexpif) +c.c.,

. (A28)

IN=(1+Na?

a )\lwi[l + exp(ika)]

nn 2
w,—1

A (&, nexp(if)) +c.c.,

(A32)

where 6/(1)=kna—w,(k)t and A,(&),7) is an envelope func-
tion yet to be determined. w, (k) is the dispersion relation for
the optical mode, given in Eq. (10) with a plus sign. In the
order j=2, the solvability condition for Q gives
Aihaw’ sin(ka)  d
e (z)zﬂ, (A33)
-+ Dol dk
so &,=¢& =e(na—V;t). The second-order solution reads

0 =0 (A34)

1 _ N @[ 1 +exp(ika)]
qn,n - 2 -1

A&, Texp(if) +c.c.  (A35)

For j=3 the solvability condition for Q
tion equation for A_,

n,n yields the evolu-

04 1 ‘;?2 +A,JA,PA, =0, (A36)
(A31)  with
|
2(1 + )\)wJ,V“L2 +5aN\, sm(ka)w4V+ +a’\ )\zw cos(ka) , (A37)
A= (1 + N’
L aw, A= @l + D24 (w2 =N’ (A38)

+=

26, Mo(1 -
where w- (k) has been given in Eq. (10).

W)\ -

W)+ (N - w)]
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